inertialUKF#
Executive Summary#
This module filters incoming star tracker measurements and reaction wheel data in order to get the best possible inertial attitude estimate. The filter used is an unscented Kalman filter using the Modified Rodrigues Parameters (MRPs) as a non-singular attitude measure. Measurements can be coming in from several camera heads.
More information on can be found in the
PDF Description
Message Connection Descriptions#
The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.
Msg Variable Name |
Msg Type |
Description |
---|---|---|
navStateOutMsg |
NavAttMsgPayload |
navigation output message |
filtDataOutMsg |
InertialFilterMsgPayload |
name of the output filter data message |
massPropsInMsg |
VehicleConfigMsgPayload |
spacecraft vehicle configuration input message |
rwParamsInMsg |
RWArrayConfigMsgPayload |
reaction wheel parameter input message. Can be an empty message if no RW are included. |
rwSpeedsInMsg |
RWSpeedMsgPayload |
reaction wheel speed input message. Can be an empty message if no RW are included. |
gyrBuffInMsg |
AccDataMsgPayload |
rate gyro input message |
Class InertialUKF#
-
class InertialUKF : public SysModel#
Top level structure for the Inertial unscented kalman filter. Used to estimate the spacecraft’s inertial attitude. Measurements are StarTracker data and gyro data.
Public Functions
-
void reset(uint64_t callTime) override#
This method resets the inertial inertial filter to an initial state and initializes the internal estimation matrices.
- Parameters:
callTime – The clock time at which the function was called (nanoseconds)
- Returns:
void
-
void updateState(uint64_t callTime) override#
This method takes the parsed CSS sensor data and outputs an estimate of the sun vector in the ADCS body frame
- Parameters:
callTime – The clock time at which the function was called (nanoseconds)
- Returns:
void
Public Members
The name of the output message.
-
Message<InertialFilterMsgPayload> filtDataOutMsg#
The name of the output filter data message.
-
ReadFunctor<VehicleConfigMsgPayload> massPropsInMsg#
[-] The name of the mass props message
-
ReadFunctor<RWArrayConfigMsgPayload> rwParamsInMsg#
The name of the RWConfigParams input message.
-
ReadFunctor<RWSpeedMsgPayload> rwSpeedsInMsg#
[-] The name of the input RW speeds message
-
ReadFunctor<AccDataMsgPayload> gyrBuffInMsg#
[-] Input message buffer from MIRU
-
size_t numStates#
[-] Number of states for this filter
-
size_t countHalfSPs#
[-] Number of sigma points over 2
-
size_t numObs#
[-] Number of measurements this cycle
-
double beta#
[-] Beta parameter for filter
-
double alpha#
[-] Alpha parameter for filter
-
double kappa#
[-] Kappa parameter for filter
-
double lambdaVal#
[-] Lambda parameter for filter
-
double gamma#
[-] Gamma parameter for filter
-
double switchMag#
[-] Threshold for where we switch MRP set
-
double dt#
[s] seconds since last data epoch
-
double timeTag#
[s] Time tag for statecovar/etc
-
double gyrAggTimeTag#
[s] Time-tag for aggregated gyro data
-
double aggSigma_b2b1[3]#
[-] Aggregated attitude motion from gyros
-
double dcm_BdyGyrpltf[3][3]#
[-] DCM for converting gyro data to body frame
-
double wM[2 * AKF_N_STATES + 1]#
[-] Weighting vector for sigma points
-
double wC[2 * AKF_N_STATES + 1]#
[-] Weighting vector for sigma points
-
double stateInit[AKF_N_STATES]#
[-] State estimate to initialize filter to
-
double state[AKF_N_STATES]#
[-] State estimate for time TimeTag
-
double statePrev[AKF_N_STATES]#
[-] State estimate for time TimeTag at previous time
-
double sBar[AKF_N_STATES * AKF_N_STATES]#
[-] Time updated covariance
-
double sBarPrev[AKF_N_STATES * AKF_N_STATES]#
[-] Time updated covariance at previous time
-
double covar[AKF_N_STATES * AKF_N_STATES]#
[-] covariance
-
double covarPrev[AKF_N_STATES * AKF_N_STATES]#
[-] covariance at previous time
-
double covarInit[AKF_N_STATES * AKF_N_STATES]#
[-] Covariance to init filter with
-
double xBar[AKF_N_STATES]#
[-] Current mean state estimate
-
double obs[3]#
[-] Observation vector for frame
-
double yMeas[3 * (2 * AKF_N_STATES + 1)]#
[-] Measurement model data
-
double SP[(2 * AKF_N_STATES + 1) * AKF_N_STATES]#
[-] sigma point matrix
-
double qNoise[MAX_ST_VEH_COUNT * AKF_N_STATES * AKF_N_STATES]#
[-] process noise matrix
-
double sQnoise[MAX_ST_VEH_COUNT * AKF_N_STATES * AKF_N_STATES]#
[-] cholesky of Qnoise
-
double IInv[3][3]#
[(kg m^2)^-1] inverse of inertia tensor
-
uint32_t numUsedGyros#
— Number of currently active CSS sensors
-
uint32_t firstPassComplete#
flag
-
double sigma_BNOut[3]#
[-] Output MRP
-
double omega_BN_BOut[3]#
[r/s] Body rate output data
-
double timeTagOut#
[s] Output time-tag information
-
double maxTimeJump#
[s] Maximum time jump to allow in propagation
-
STAttMsgPayload stSensorIn[MAX_ST_VEH_COUNT]#
[-] ST sensor data read in from message bus
-
int stSensorOrder[MAX_ST_VEH_COUNT]#
[-] ST sensor data read in from message bus
-
uint64_t ClockTimeST[MAX_ST_VEH_COUNT]#
[-] All of the ClockTimes for the STs
-
int isFreshST[MAX_ST_VEH_COUNT]#
[-] isWritten flag for STs
-
RWArrayConfigMsgPayload rwConfigParams#
[-] struct to store message containing RW config parameters in body B frame
-
RWSpeedMsgPayload rwSpeeds#
[-] Local reaction wheel speeds
-
RWSpeedMsgPayload rwSpeedPrev#
[-] Local reaction wheel speeds
-
double speedDt#
[s] The time difference between speeds
-
uint64_t timeWheelPrev#
[ns] Previous wheel time-tag from msg
-
VehicleConfigMsgPayload localConfigData#
[-] Vehicle configuration data
-
LowPassFilterData gyroFilt[3]#
[-] Low-pass filters for input gyro data
-
STDataParsing STDatasStruct#
[-] Id of the input message buffer
-
BSKLogger bskLogger = {}#
BSK Logging.
-
void reset(uint64_t callTime) override#