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a b s t r a c t

Point set registration is important for calibration of multiple cameras, 3D reconstruction and recognition,
etc. The iterative closest point (ICP) algorithm is accurate and fast for point set registration in a same
scale, but it does not handle the case with different scales. This paper instead introduces a novel approach
named the scaling iterative closest point (SICP) algorithm which integrates a scale matrix with bound-
aries into the original ICP algorithm for scaling registration. At each iterative step of this algorithm, we
set up correspondence between two m–D point sets, and then use a simple and fast iterative algorithm
with the singular value decomposition (SVD) method and the properties of parabola incorporated to com-
pute scale, rotation and translation transformations. The SICP algorithm has been proved to converge
monotonically to a local minimum from any given parameters. Hence, to reach desired global minimum,
good initial parameters are required which are successfully estimated in this paper by analyzing covari-
ance matrices of point sets. The SICP algorithm is independent of shape representation and feature
extraction, and thereby it is general for scaling registration of m–D point sets. Experimental results dem-
onstrate its efficiency and accuracy compared with the standard ICP algorithm.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With the development of digital image, image registration espe-
cially feature-based image registration has become a key topic.
When salient features of an image are represented as geometric
entities, such as points, lines, and surfaces, it is of great importance
to register image point sets with the optimal or suboptimal geo-
metric transformation due to its wide applications such as calibra-
tion and synchronization of multiple cameras, 3D reconstruction
using cameras. Moreover, as 3D measuring devices have been ap-
plied widely in recent years such as range scanner, stereoscopic
plotter and medical equipment, it is crucial to register multi-view
range images and build 3D geometric model for recognition.

In a word, point set registration has been a hot topic in com-
puter vision, pattern recognition and image analysis. The iterative
closest point (ICP) algorithm [1–3] is known for solving this prob-
lem for its good accuracy and fast speed. It has been widely used in
a variety of fields such as 3D reconstruction [4], simultaneous
localization and mapping [5], biometrics recognition [6], medical
image analysis [7]. To speed up the traditional ICP algorithm, an
increasing group of scholars have studied it. Fitzgibbon [8] em-
ll rights reserved.
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ployed the Levenberg–Marquardt algorithm to accelerate ICP, and
Jost et al. [9] combined a coarse to fine multi-resolution technique
with the neighbor search algorithm into ICP to improve the regis-
tration. Moreover, many scholars have introduced other methods
into ICP for its more robustness. Lee et al. [10] proposed a measure
for estimating the reliability of ICP. Invariant features were de-
scribed by Sharp et al. [11] to decrease the probability of being
trapped in a local minimum. Granger and Pennec [12] added
Expectation-Maximization principles to ICP and used a coarse-to-
fine approach based on an annealing scheme to improve the
robustness. Silva et al. [13] introduced genetic algorithms and eval-
uation metric into ICP for more precise registration.

The original ICP algorithm does not take scale factor into ac-
count in the least squares (LS) problem, while in practice, the scale
factor exists universally in registration since images acquired by
real digitizers differ greatly in viewpoints and scanning resolu-
tions, etc. Some scholars ever improved ICP for scaling registration.
Zha et al. [14] used extended signature images to estimate the
scale and applied it to traditional ICP for registration, while Zinßer
et al. [15] directly estimated the scale in the ICP algorithm. Obvi-
ously the scale is a scalar that can only register two isotropic point
sets, but not anisotropic ones which exists widely in scaling regis-
tration. To solve it, we have ever proposed to introduce a scale ma-
trix directly into the LS problem with a constraint condition that
the scale matrix is bounded [16]. The reason for adding this con-
straint condition is to avoid the phenomenon happening that
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points of a set converge to a small subset of the other set. This pa-
per details the scaling registration problem and the scaling itera-
tive closest point (SICP) algorithm, an extension of the ICP
algorithm to solve this constraint optimization problem. At each
iterative step of the SICP algorithm, scale, rotation and translation
transformations are computed through a new and fast iterative
algorithm. Accordingly, the SICP algorithm has the similarly fast
speed to the ICP algorithm and it also converges monotonically
to a local minimum from any given parameters. To obtain the glo-
bal minimum, we propose a simple method to estimate the initial
parameters by analyzing eigenvalues and eigenvectors of covari-
ance matrices of point sets. This new proposed algorithm has been
tested in experiments and the experimental results demonstrate
that our presented algorithm is a fast and robust technique to solve
scaling registration problems caused by the scale factor, and it can
be used widely in practice.

This paper is organized as follows. In Section 2, a general LS
problem has been stated and the ICP algorithm has been reviewed
briefly. In Section 3, an optimization problem is described with a
constraint condition that the scale matrix is bounded, and a pro-
posed method – the SICP algorithm is given. In Section 4, conver-
gence theorems are given and initial parameters are discussed.
Following that is Section 5 in which the proposed technique is
evaluated on the experiments and a conclusion is finally drawn
in the last section.

2. Problem statement and the ICP algorithm

2.1. Problem formulation

The registration of m–D point sets is a difficult problem. In this
part, we formulate the point set registration as a general optimiza-
tion problem. Given two point sets in Rm, a model shape
M , f~migNm

i¼1 and a data shape P , f~pigNp

i¼1; ðNm;Np 2 NÞ, and assume
that they have large overlap. A match between two m–D point sets
is to find a transformation T, with which P is registered to be in best
alignment with M, so the formulation is based on the following LS
problem:

min
T;j2f1;2;...;Nmg

XNp

i¼1

Tð~piÞ � ~mj

�� ��2
2

 !
ð1Þ

This objective function represents a more general registration
between two m–D point sets. In this function, T can be various
transformations.

2.2. The ICP algorithm

The ICP algorithm proposed by Besl and McKay [1] is an efficient
method to tackle rigid registration between two point sets. Its goal
is to find a rigid transformation, with which P is registered to be in
the best alignment with M, that is, let T of Eq. (1) be rotation and
translation transformations, hence the rigid registration between
two point sets is

min
R;~t;j2f1;2;...;Nmg

PNp

i¼1
ðR~pi þ~tÞ � ~mj

�� ��2

2

 !

s:t: RTR ¼ Im; detðRÞ ¼ 1

ð2Þ

where R 2 Rm�m is a rotation matrix,~t 2 Rm is a translation vector.
The ICP algorithm achieves registration with good accuracy and

fast speed, and it has two steps.
Firstly, set up correspondence between two point sets:

ckðiÞ ¼ arg min
j2f1;2;...;Nmg

ðRk�1~pi þ~tk�1Þ � ~mj

�� ��2

2

� �
for i ¼ 1; . . . ;Np ð3Þ
Secondly, compute a new transformation between two point sets
fRk�1~pi þ~tk�1gNp

i¼1 and f~mckðiÞg
Np

i¼1 by minimizing squared distance:

ðR�;~t�Þ ¼ arg min
RTR¼Im ;detðRÞ¼1;~t

XNp

i¼1

RðRk�1~pi þ~tk�1Þ þ~t � ~mckðiÞ
�� ��2

2

 !
ð4Þ

Update Rk and~tk:

Rk ¼ R�Rk�1; ~tk ¼ R�~tk�1 þ~t� ð5Þ
3. The SICP algorithm

3.1. The SICP algorithm

It is known that the ICP algorithm is a fast and accurate ap-
proach for rigid registration between two point sets. However,
the scale factor may exist in point sets. In practice, we always need
to consider the scaling registration, which includes scale transfor-
mation and rigid transformation:

~x0 ¼ Tð~xÞ ¼ RS~xþ~t ð6Þ

where S ¼ diagðs1; s2; . . . ; smÞ is a scale matrix, R is an orthogonal
matrix, and~t is a translation vector.

If we now substitute Eq. (6) in Eq. (1), the function can be for-
mulated as

min
S;R;~t;j2f1;2;...;Nmg

XNp

i¼1

ðRS~pi þ~tÞ � ~mj

�� ��2

2

 !
ð7Þ

The LS problem which is presented in Eq. (7) is to deal with the
scaling registration. In Eq. (7), the orthogonal matrix R can denote
reflection and rotation transformations. As reflection and rotation
transformations are two independent transformations; mean-
while, reflection transformation is already given at the initial stage
of the registration, what needs to be considered in this paper is
rotation transformation only. Moreover, the scale matrix S must
be bounded in practice. The reason for this is to avoid the phenom-
enon happening that points of one set converge to a small subset of
the other set, namely, the scale matrix is close to 0. With the expo-
sition above, the registration problem now becomes the following
LS problem:

min
S;R;~t;j2f1;2;...;Nmg

PNp

i¼1
ðRS~pi þ~tÞ � ~mj

�� ��2

2

 !

s:t: RTR ¼ Im; detðRÞ ¼ 1
S ¼ diagðs1; s2; . . . ; smÞ; sj 2 ½aj; bj�

ð8Þ

where S is a scale matrix with boundary and R is a rotation matrix.
How to solve Eq. (8) is the focus of this paper. Actually, we can

solve this problem in the way the ICP algorithm does by iteration.
At each iteration, two steps are included:

Step 1: Set up correspondence by the current transformation
ðSk�1;Rk�1;~tk�1Þ:
ckðiÞ ¼ arg min
j2f1;2;...;Nmg

ðRk�1Sk�1~pi þ~tk�1Þ � ~mj

�� ��2

2

� �
ð9Þ
Step 2: Assume S ¼ diagðs1; s2; . . . ; smÞ, compute a new transfor-
~
mation ðSk;Rk; tkÞ:
ðSk;Rk;~tkÞ ¼ arg min
sj2½aj ;bj �;R;~t

XNp

i¼1

RS~pi þ~t � ~mckðiÞ
�� ��2

2

 !
ð10Þ
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3.2. Computation of scale, rotation and translation transformations

Step 1 of the SICP algorithm can be solved by many methods
such as the nearest point search algorithm based on Delaunay tri-
angulations [17]; hence step 2 is the key step. To compute the new
scale, rotation and translation transformations, the following lem-
ma is given first to eliminate the translation transformation:

Lemma 1. Given two m–D point sets f~qigN
i¼1 and f~nigN

i¼1, the function
Fð~tÞ ¼

PN
i¼1k~qi þ~t �~nik2

2 has the minimum when ~t ¼ 1
N

PN
i¼1~ni�

1
N

PN
i¼1~qi.

Proof. If Fð~tÞ reaches the minimum, it must satisfy the following
requirement:

dFð~tÞ
d~t
¼ 0

As dFð~tÞ
d~t
¼ 2

PN
i¼1ð~qi þ~t �~niÞ ¼ 0, we can obtain ~t ¼ 1

N

PN
i¼1~ni�

1
N

PN
i¼1~qi. h

According to Lemma 1, if minimizing FðS;RÞ ¼
PNp

i¼1k
ðRS~pi þ~tÞ � ~mckðiÞk

2
2, we get~t ¼ 1

Np

PNp

i¼1
~mckðiÞ� 1

Np

PNp

i¼1RS~pi. Hence,

FðS;RÞ ¼
XNp

i¼1

RS ~pi �
1

Np

XNp

i¼1

~pi

 !
� ~mckðiÞ �

1
Np

XNp

i¼1

~mckðiÞ

 !�����
�����

2

2

Let ~qi ,~pi � 1
Np

PNp

i¼1
~pi and ~ni , ~mckðiÞ � 1

Np

PNp

i¼1
~mckðiÞ, therefore,

FðS;RÞ ¼
XNp

i¼1

RS~qi �~ni

�� ��2
2

¼
XNp

i¼1

~qT
i S2~qi � 2

XNp

i¼1

~nT
i RS~qi þ

XNp

i¼1

~nT
i
~ni ð11Þ

To minimize Eq. (11), we can recover the following partial dif-
ferential equations to compute scale and rotation transformations:

@FðS;RÞ
@R

¼ 0 ð12Þ

@FðS;RÞ
@S

¼ 0 ð13Þ
3.2.1. Rotation computation
The rigid registration between two paired point sets is a well-

studied problem in the literature. Many closed-form methods are
known to be used to compute the rigid transformation: singular va-
lue decomposition (SVD) [18], unit quaternions [19], orthonormal
matrices [20] and dual quaternions [21]. An overview of these meth-
ods and a comparative analysis can be found in [22]. As the SVD algo-
rithm still works even when S is considered, we will detail the
method to compute rotation transformation of Eq. (12) as follows.

For any given S, the necessary condition of minimizing FðS;RÞ is
Eq. (12) which cannot be computed easily, but according to Eq.

(11), minimizing FðS;RÞ is equivalent to maximizing
PNp

i¼1
~nT

i RS~qi,
which can be solved similar to that Arun [18] had proposed, thus
we only give the conclusion here.

1. Calculate m�m matrix H and its SVD.

H ¼ 1
Np

XNp

i¼1

S~qi~nT
i ð14Þ

H ¼ UKV ð15Þ

2. Calculate the rotation matrix R.
(a) If detðVUTÞ ¼ þ1; VUT is a rotation:

R ¼ VUT ð16Þ
(b) If detðVUTÞ ¼ �1; VUT is a reflection:

(i) If one of the singular values of H is zero, the desired rota-
tion can be calculated as follows:

R ¼ V
Im�1 0

0 �1

� �
UT ð17Þ

(ii) If none of the singular values of H is zero, we go to a RAN-
SAC-like technique.
3.2.2. Scale computation
Suppose that Ej ¼ diagð0; . . . ;0;1;0; . . . ;0Þ; ðj ¼ 1;2; . . . ;mÞ is a

diagonal matrix where the jth element is one, but others are zero.
They are the basis of the matrix S, and then Eq. (13) can be ex-
pressed as follows:

@FðS;RÞ
@S

¼ lim
t!0

FðSþ tEj;RÞ � FðS;RÞ
t

¼ 2
XNp

i¼1

~qT
i SEj~qi � 2

XNp

i¼1

~nT
i REj~qi ¼ 0 ð18Þ

From Eq. (18), we get

sj ¼
PNp

i¼1
~nT

i REj~qiPNp

i¼1
~qT

i Ej~qi

ð19Þ
1. If sj is any arbitrary number, we obtain the scale of SICP with
unbounded scale:

sj ¼
XNp

i¼1

~nT
i REj~qi

,XNp

i¼1

~qT
i Ej~qi ð20Þ

2. If sj 2 ½aj; bj�, according to Eq. (11), the function is known to be a
parabola with respect to sj and its symmetry axis parallels to
vertical axis, so the minimum can be achieved at the point
which is nearest to the vertex of this parabola, hence we get
the scale sj of the SICP algorithm:

sj ¼ arg min
s2½aj ;bj �

s�
XNp

i¼1

~nT
i REj~qi

�����
,XNp

i¼1

~qT
i Ej~qi

����� ð21Þ
3.2.3. Termination
After the computation of rotation and scale transformations

above, we check whether the change of S is less than e or a maxi-
mum number of iterations is reached. If it does, we switch outside
the loop, otherwise we continue the iteration.

3.2.4. Translation computation
If rotation and scale transformations are computed, according

to Lemma 1, we calculate~tk:

~tk ¼
1

Np

XNp

i¼1

~mckðiÞ �
1

Np

XNp

i¼1

RkSk~pi ð22Þ

From what is discussed above, the scale, rotation and transla-
tion transformations of Eq. (10) are computed. Therefore, the
whole SICP algorithm is reasonably drawn out as follows.

Input: Two point sets P , f~pigNp

i¼1 and M , f~migNm
i¼1.

Initialize: Scale matrix S0, rotation matrix R0, translation vector
~t0 and the scale boundary are initialized by using covariance
matrices of point sets, which is stated in Section 4.
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Repeat
Step 1: Compute Eq. (9) to set up correspondence fð~pi; ~mckðiÞÞg

Np

i¼1
by the ðk� 1Þth transformation ðSk�1;Rk�1;~tk�1Þ.

Step 2: Let Sk;0 ¼ Sk�1; Rk;0 ¼ Rk�1; ~qi ,~pi � 1
Np

PNp

i¼1
~pi and

~ni , ~mckðiÞ � 1
Np

PNp

i¼1
~mckðiÞ.

Repeat
1: For any given Sk;n�1; Rk;n can be calculated according to

Eqs. (14)–(17) which minimizes FðSk;n�1;RÞ and satisfies
the condition RT

k;nRk;n ¼ Im; detðRk;nÞ ¼ 1.
2: For any given Rk;n; Sk;n can be calculated according to Eqs.

(20) or (21) which minimizes FðS;Rk;nÞ and satisfies the
condition Sk;n 2 diagð½a1; b1�; . . . ; ½am; bm�Þ.

until kSk;n � Sk;n�1k 6 e or n reaches a maximum number of
iterations.
Let Sk ¼ Sk;n and Rk ¼ Rk;n, and calculate~tk by Eq. (22).
untiljeðSk;Rk;~tkÞ � eðSk�1;Rk�1;~tk�1Þj 6 e or k reaches a maxi-
mum number of iterations.
Output: Scale matrix Sk, rotation matrix Rk and translation vec-
tor~tk.

From the whole SICP algorithm, we know that the SICP algo-
rithm is similar to the ICP algorithm, which is composed of two ba-
sic steps: to establish the correspondence and to compute the
transformation. Although the SICP algorithm can not give an ana-
lytical solution for transformation parameters at each iteration, it
gets similar computation time as the ICP algorithm for two reasons.
One is that the computation time of the transformation is far less
than that of the correspondence, so the computation time of both
algorithms focuses on the computation time of the correspon-
dence, both of which are same. The other reason is that as the data
shape moves closer to the model shape, our algorithm needs rather
fewer iterative steps for computation of the scale, rotation and
translation transformations. Hence, the SICP algorithm is fast.

4. Convergence theorem and initial parameters

In this section, the convergence of the SICP algorithm will be
stated and proved. SICP and ICP share the same procedure that
the data shape searches the closest points in the model shape by
iteration. Although the data shape cannot find the correct corre-
sponding points in the model shape in one step, it moves to the
correct point set much nearer by iteration. The following theorems
will elaborately prove SICP converges in theory.

Theorem 1. The algorithm for computing the scale and rotation
matrices in Section 3.2 converges monotonically to a minimum.

Proof. Given Sk;n�1, from the algorithm we know Rk;n calculated in
the step of rotation computation can minimize FðSk;n�1;RÞ and sat-
isfy the condition RT

k;nRk;n ¼ Im; detðRk;nÞ ¼ 1. It is clear that
FðSk;n�1;Rk;nÞ 6 FðSk;n�1;Rk;n�1Þ.

Next, in the step of scale computation, FðSk;n;Rk;nÞ is the
minimum of FðS;Rk;nÞ and Sk;n satisfies the condition
Sk;n 2 diagð½a1; b1�; . . . ; ½am; bm�Þ, so it is easy to infer that
FðSk;n;Rk;nÞ 6 FðSk;n�1;Rk;nÞ.

Hence, repeat above procedures, we obtain

0 6 � � � 6 FðSk;n;Rk;nÞ 6 FðSk;n�1;Rk;nÞ 6 FðSk;n�1;Rk;n�1Þ
6 � � � for all n

According to the Monotonic Sequence Theorem ‘‘Every bounded
monotonic sequence of real numbers is convergent”, the algorithm
for computing the scale and rotation matrices converges monoton-
ically to a minimum. h
Theorem 2. The SICP algorithm converges monotonically to a local
minimum with respect to square distance.

Proof. Given two point sets M , f~migNm
i¼1 and P , f~pigNp

i¼1. Denote
Sk; Rk and~tk as scale matrix, rotation matrix and translation vec-
tor, respectively. Let~qi;k�1 , Rk�1Sk�1~pi þ~tk�1, then we can compute
its corresponding closet point ~mckðiÞ in the model shape. Therefore,
the square distance is

ek ¼
XNp

i¼1

~qi;k�1 � ~mckðiÞ
�� ��2

2

Because f~pig is to register f~mckðiÞg, we compute the best scale,
rotation and translation transformations. Hence, the square dis-
tance is

ek ¼
XNp

i¼1

SkRk~pi þ~tk � ~mckðiÞ
�� ��2

2

It is obvious that ek 6 ek. Otherwise, let
Sk ¼ Sk�1;Rk ¼ Rk�1;~tk ¼~tk�1, we obtain ek ¼ ek. However, accord-
ing to Theorem 1, ek is the minimum of Eq. (10), hence ek 6 ek.

Next, suppose ~qi;k , SkRk~pi þ~tk, then square distance is ekþ1,
that is,

ekþ1 ¼
XNp

i¼1

~qi;k � ~mckþ1ðiÞ
�� ��2

2

Because ekþ1 is the minimum of Eq. (9), then

ekþ1 ¼
XNp

i¼1

~qi;k � ~mckþ1ðiÞ
�� ��2

2 6
XNp

i¼1

~qi;k � ~mckðiÞ
�� ��2

2 ¼ ek

Hence, repeat procedures above, we obtain

0 6 � � � 6 ekþ1 6 ek 6 ek 6 � � � for all k

According to the Monotonic Sequence Theorem ‘‘Every bounded
monotonic sequence of real numbers is convergent”, the SICP algo-
rithm converges monotonically to a local minimum with respect to
square distance. h

Theorem 2 shows the SICP algorithm converges monotonically
to a local minimum for any given initial parameters. To obtain
the global minimum, the usual way is to find the minimum of all
local minima. However, it is difficult to characterize precisely
and generally that the registration state space is partitioned into
local minima regions, for the encountered shapes are quite differ-
ent. Therefore, how to estimate initial parameters well and give the
constraints is difficult. This paper discusses some cases about the
initial parameters of scale and rotation transformations with corre-
sponding constraints. Since rotation parameter has been detailed
in [1,10] by using covariance matrices, this paper will extend the
works and discuss some cases about the initial rotation and scale
parameters with corresponding constraints briefly.

Variability is able to be described by covariance matrix from
which eigenvectors and eigenvalues are calculated. The eigenvec-
tor corresponding to the largest eigenvalue denotes the direction
of largest variance of the data set and the eigenvectors are ortho-
normal. When shapes will not deform greatly, that is, the ratio of
any two scales is not large, the eigenvalues and eigenvectors of
covariance matrices are used to estimate the initial parameters
and the boundary of the scale parameter.

Assume that points are sampled enough from two shapes and
their covariance matrices are CM and CP . The square roots of CM

and CP ’s eigenvalues are k1; . . . ; km and l1; . . . ;lm, respectively,
with corresponding eigenvectors p1; . . . ; pm and r1; . . . ; rm. When
one shape is deformed with a scale matrix, the eigenvectors may
deviate the original axes and the eigenvalues may change large



Table 1
Compared results on two 2D shapes with the same scale.

Point sets ICP SICP SICP with unbounded scale

Scale RMS Scale RMS Scale RMS

Bat 1.0000 0.5608 diag(1.0005,1.0009) 0.5518 diag(0.5505,0.3570) 34.8171
Butterfly 1.0000 0.5663 diag(1.0006,1.0012) 0.5640 diag(0.4490,0.7549) 16.7619
Horse 1.0000 0.7783 diag(1.0003,1.0003) 0.7779 diag(0.1064,0.8396) 5.1919
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or less. So is the case when some noise or missing data adds to one
shape. Hence, the initial rotation matrix is the relation of any two
eigenvectors between two shapes rather than being obtained by
setting up the relation of eigenvectors with sorted corresponding
eigenvalues. Moreover, because of the bidirection of eigenvectors,
the total number of the initial rotation matrices is
2m� 2ðm� 1Þ � � � � � 2 ¼ 2mm!, which is quite a lot. As the SICP
algorithm has wide large convergence domain because of its
bounded scale, it is not necessary at all most of time to try all rota-
tion matrices and the rotation matrix is initialized to be the iden-
tity transformation or the 180� rotation of all eigenvector axes in
this paper.

When the data shape P registers the model shape M, the eigen-
values of data shape will scale to the corresponding eigenvalues of
model shape. Because of the noise, missing data and the aniso-
tropic scale factor, the corresponding eigenvector axes are ambig-
uous while the average value of the ratios of eigenvalues is well for
the scale initialization. Hence, the initial scale matix
S0 ¼ diagðs01; s02; . . . ; s0mÞ and its constraint are estimated as
follows:

s0i ¼
1
m

Xm

j¼1

lj

kj
ði ¼ 1;2; . . . ;mÞ ð23Þ

1
m

Xm

j¼1

kj

lj
� d 6 s0i 6

1
m

Xm

j¼1

kj

lj
þ d ð24Þ

where d is a given value meaning the tolerance of the deformation,
which can be given manually or by other methods. In this paper, as-
sume g is 1

m

Pm
j¼1

lj

kj
. When the relative scaling is small, we set

d ¼ 0:1g.

Fig. 1. Registration results on 2D bat shapes. (a) 2D data shape. (b) 2D model shape.
(c) Registration result of ICP. (d) Registration result of SICP. (e) Registration result of
SICP with unbounded scale.
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5. Experimental results

To verify the robustness and convergence of our presented
method, experiments are tested on the following data sets: (1) cer-
tain 2D shapes in part B of CE-Shape-1 [23], (2) the Stanford 3D
Scanning Repository.1 The results of the ICP and SICP algorithms
are reported as follows in which errors are computed by root mean
square (RMS). All programs are written in Matlab 7.0 and are run on
PC with Pentium 4 3.6 G CPU and 1 G RAM.
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5.1. 2D shapes matching

The following experiments are conducted to test our algo-
rithm’s robustness and efficiency for registration of 2D shapes.
We use some shapes of Part B of CE-Shape-1, a large 2D shapes
database, to compare ICP and SICP. In each experiment, one shape
is selected as the data shape, and the other the model shape. In the
experiments, we extract the edges of 2D shapes as point sets and
use covariance matrices of these point sets to estimate the scale
parameter and its constraint in the SICP algorithm. And to prove
the scale of SICP needs to be bounded, we also give compared re-
1 http://graphics.stanford.edu/data/3Dscanrep/.
sults of SICP with unbounded scale, the initial parameters of which
are estimated by covariance matrices as well.

1. First, we prove SICP is similar to ICP which can complete reg-
istration of 2D shapes with the same scale. In SICP, we estimate the
initial scale matrix S0 and its constraint from Eqs. (23) and (24),
and the compared results are shown in Table 1.

Table 1 reveals SICP can have almost same accuracy as ICP be-
cause RMS and scale of ICP and SICP are similar. Furthermore,
RMS of SICP with unbounded scale is much larger than that of
the other two algorithms and its coordinate is much smaller, which
means that SICP with unbounded scale produces unsatisfied
Fig. 2. The convergence of ICP, SICP and SICP with unbounded scale on 2D bat
shapes.

http://graphics.stanford.edu/data/3Dscanrep/


Table 2
Compared results on two 2D shapes with different scales.

Point sets ICP SICP SICP with unbounded scale

Scale RMS Scale RMS Scale RMS

Beetle 1.0000 19.8742 diag(1.7529,1.7523) 0.9628 diag(1.5598,0.0022) 11.8789
Bell 1.0000 17.6304 diag(1.5889,1.6922) 5.4280 diag(1.5889,1.6922) 5.4280
Turtle 1.0000 11.3636 diag(1.0852,1.1974) 7.7115 diag(0.0000,0.9694) 5.4695

Fig. 3. Registration results on 2D turtle shapes. (a) 2D data shape. (b) 2D model
shape. (c) Registration result of ICP. (d) Registration result of SICP. (e) Registration
result of SICP with unbounded scale.
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Fig. 4. The convergence of ICP, SICP and SICP with unbounded scale on 2D turtle
shapes.
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results. The typical registration results are displayed in Figs. 1 and
2, respectively.
Table 3
Compared results of ICP and SICP on the Stanford database.

Point sets ICP

Scale Bunny 1.0000
Dragon 1.0000
Happy Buddha 1.0000

RMS ð�10�3Þ Bunny 2.0217

Dragon 1.8346
Happy Buddha 2.2501
Fig. 1 manifests both ICP and SICP are effective in registering
two 2D point sets with the same scale. However, SICP with un-
bounded scale works comparatively worse, for all points of 2D data
shape converge to a small subset of 2D model shape. Hence, scale
of SICP needs bounding.

In Fig. 2, ICP and SICP converge in a similar way at a fast speed
while the curve of SICP with unbounded scale differs greatly and its
RMS is much larger. In this experiment, the average performance
time of each iterative step of these three algorithms is all less than
0.02 s, demonstrating our algorithm is efficient. In fact, at each iter-
ative step, the average iterative numbers of the computation of
scaling transformation are 2.22 and 2.44 for SICP and SICP with un-
bounded scale, respectively. Hence, although our algorithm cannot
give an analytical solution for transformation parameters, it gets
similar computation time as ICP, which is analyzed detailedly at
the end of Section 3.2.

2. In the following experiment, some typical registrations are
used to display SICP is able to complete registration with different
scales while ICP cannot. First of all, the initial scale matrix and its
constraint are also estimated from Eqs. (23) and (24). The com-
pared results of these algorithms are given in Table 2.

In Table 2, (RMSICP � RMSSICP)/RMSICP is large, which suggests
SICP is better than ICP in registration between two 2D shapes with
different scales. Moreover, for beetle and turtle, whatever RMS of
SICP with unbounded scale is less or more than that of SICP, its
coordinate is close to 0, displaying the scale of SICP needs to be
bounded. However, for bell, SICP with unbounded scale can get
the same results as SICP, because SICP with unbounded scale just
gets good initial parameters in this experiment. In Fact, the success
or failure registration of SICP with unbounded scale depends on the
estimation of the initial scaling transformation between two point
sets. In some good cases, such as the shapes are simple or noises
are rather little, the initial scaling transformation can be estimated
quite well, so SICP with unbounded scale can get good registration
results, but this is done difficultly in practice. As point sets are al-
ways undesirable, the initial parameters are always estimated
inaccurate, which may cause the registration of SICP with un-
bounded scale to fail. Hence, the scale parameter of our algorithm
is bounded in an interval, which can be tolerant of the inaccuracy
of the estimation of the initial parameters. To see the compared re-
sults in a more intuitive way, one example of scaling registration
results is portrayed in Figs. 3 and 4.

Fig. 3 displays SICP produces a more satisfying registration re-
sult than ICP, a proof to show SICP has good accuracy in 2D shape
matching. In this figure, SICP with unbounded scale is worse than
SICP, demonstrating the necessity of bounding the SICP’s scale.
SICP SICP with unbounded scale

diag(0.9786,0.9919, 0.9561) diag(0.5361,0.4254,0.3155)
diag(1.0026,1.0016,0.9719) diag(1.0026, 1.0016,0.9719)
diag(0.9710,0.9953,0.9114) diag(0.9712,0.9953,0.9112)

1.9251 1.9935

1.8141 1.8141
2.0949 2.0950
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Fig. 4 shows the convergence of ICP, SICP and SICP with un-
bounded scale on two 2D shapes. In this experiment, all the algo-
rithms converge monotonically and quite fast. The average steps
of the transformation’s computation are 1.42 and 2.16 for SICP
and SICP with unbounded scale, respectively, and the average per-
formance time of each iterative step of three algorithms is all about
0.01 s, proving that our algorithm is rapid.
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Fig. 6. The convergence of ICP, SICP and SICP with unbounded scale on the Stanford
Bunny.
5.2. Range data matching

In this part, our method is tested to prove its robustness and
efficiency for registration of 3D range data. In the experiments
we use the Stanford database, in which covariance matrices are ap-
plied to estimate the scale parameter and its constraint in the SICP
algorithm. Moreover, to show the registration results in 3D space
intuitively, view point(az,el) is used to set the viewing angle for
a 3D plot. Azimuth, az, is a polar angle in the x–y plane, with the
horizontal rotation about the z-axis as measured in degrees from
the negative y-axis. Positive values of az indicate counterclockwise
rotation of the viewpoint. Elevation, el, is the angle above (positive
angle) or below (negative angle) the x–y plane.

Firstly, the Stanford database is used to compare ICP and SICP.
Bunny (bun000 with 40,256 points and bun 045 with 40,097
points), Dragon (dragonStandRight_0 with 41,841 points and drag-
onStandRight_24 with 34,836 points) and Happy Buddha (happy-
StandRight_0 with 78,056 points and happyStandRight_24 with
75,582 points) are adopted. We estimate the initial scale matrix
Fig. 5. Registration results on the Stanford Bunny. (a) Original data of Stanford Bunny. (
SICP with Unbounded Scale.
S0 and its constraint, and the compared results are displayed in Ta-
ble 3, Figs. 5 and 6, respectively.

Displayed in Table 3, RMS of SICP is least, which proves that
SICP can get higher precision. In addition, for Stanford Bunny, SICP
with unbounded scale has small error, but its scale is also small,
b) Registration result of ICP. (c) Registration result of SICP. (d) Registration result of



Table 4
Registration results of SICP on the Stanford Bunny with respect to the scale factor.

q1 q2 q3 Scale S RMS ð�10�3Þ ST

0.01 0.01 0.01 diag(97.8707,99.1987,95.6056) 1.9251 diag(0.9787,0.9920,0.9561)
0.1 0.1 0.1 diag(9.7870,9.9197,9.5609) 1.9251 diag(0.9787,0.9920,0.9561)
0.5 0.5 0.5 diag(1.9575,1.9838,1.9124) 1.9251 diag(0.9787,0.9919,0.9562)
10 10 10 diag(0.0979,0.0992,0.0957) 1.9253 diag(0.9791,0.9915,0.9575)
100 100 100 diag(0.0098,0.0099,0.0096) 1.9254 diag(0.9793,0.9913,0.9582)
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which denotes that SICP with unbounded scale fails in the registra-
tion of Stanford Bunny. This is demonstrated by Fig. 5 as well.
Therefore, it is necessary to bound the scale of SICP. As is shown
in Fig. 6, these three algorithms all converge monotonically. At
each iterative step, the average steps of the transformation’s com-
putation are 4.54 and 4.24 for SICP and SICP with unbounded scale,
respectively. Furthermore, the average performance time is 0.97 s,
Fig. 7. Registration result of SICP on the Stanford Bunny when T = diag(0.5,0.5,0.5). (a) O
(�37.5,30). (c) Registration result of SICP with view point (0,90). (d) Registration result

Table 5
Registration results of SICP on the Stanford database with respect to the scale factor.

Range data qi Scale S

Dragon 0.01 diag(100.2684,100.1593,97
0.5 diag(2.0053, 2.0031,1.9435
100 diag(0.0100,0.0100,0.0097)

Happy Buddha 0.01 diag(97.0967,99.5313,91.1
0.5 diag(1.9419,1.9906,1.8228
100 diag(0.0097,0.0100,0.0091)
1.00 s and 0.99 s for ICP, SICP and SICP with unbounded scale,
respectively.

2. In the following experiments, the convergence of our algo-
rithm is tested on Stanford Database with respect to the scale fac-
tor. We scale one range data to register the other range data and
estimate the initial scale parameter and its constraint from Eqs.
(23) and (24).
riginal range data with view point (0,90). (b) Original range data with view point
of SICP with view point (�37.5,30).

RMS ST

.1604) 1.8141 diag(1.0027,1.0016,0.9716)
) 1.8141 diag(1.0026,1.0016,0.9717)

1.8141 diag(1.0024,1.0016,0.9723)

412) 2.0949 diag(0.9710,0.9953,0.9114)
) 2.0949 diag(0.9710,0.9953,0.9114)

2.0949 diag(0.9710,0.9953,0.9114)



Fig. 8. Registration result of SICP on the Stanford Dragon when T = diag(0.5,0.5,0.5). (a) Original range data with view point (0,90). (b) Original range data with view point
(�37.5,30). (c) Registration result of SICP with view point (0,90). (d) Registration result of SICP with view point (�37.5,30).
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We test our method on the Stanford Bunny first. We scale the
bun045 by a scale factor T ¼ ðdiagðq1;q2;q3ÞÞ

�1, and then use the
zoom range data to register bun000. To demonstrate the stability
of SICP’s convergence, we let qi vary greatly from 0.01 to 100. Some
results are displayed in Table 4.

It is easy to see from Table 4 that whatever T is, RMS of SICP is
similar. Nevertheless, the displayed scales appear quite different
because the range data are scaled. To evaluate the scale factor of
SICP in different experiments above, modified scale ST is intro-
duced. The results reveal that the modified scales are similar. All
of these above tell us that our method is robust in convergence
with respect to the scale factor. Fig. 7 shows one fairly fine registra-
tion result of SICP.

We further test the algorithms on Dragon and Happy Buddha of
Stanford Database. The procedure of these experiments is same as
that on Stanford Bunny, and some results are shown on Table 5,
from which, it is found that whatever T is, RMS and ST are similar.
This proves again that our method is robust in convergence with
respect to the scale factor. Figs. 8 and 9 show some good registra-
tion results of SICP.

6. Conclusion

This paper has advanced a novel approach for scaling registra-
tion between two m–D point sets in the way of incorporating a
bounded scale matrix into the ICP algorithm. This algorithm uses
a simple iterative algorithm with the SVD algorithm and the prop-
erties of parabola to compute the transformations at each iterative
step. Due to its local convergence, the initial parameters need to be
estimated by covariance matrices of two point sets. A series of
compared experiments designed demonstrate our algorithm is
more accurate and converges similarly in contrast to the standard
ICP algorithm.

The main contributions of Scaling Iterative Closest Point (SICP)
algorithm are delivered as follows:

1. It achieves similar accuracy as the standard ICP algorithm for
the registration of point sets with the same scale, and it can
handle the registration of point sets with different scales, while
ICP cannot.

2. It has the similarly fast speed as the traditional ICP algorithm.
Experiments demonstrate that they have similar performance
time.

3. A novel technique has been proposed in our algorithm to obtain
desired global minimum by estimating the initial parameters in
the way of using eigenvalues and eigenvectors of covariance
matrices of point sets.

4. Its scale parameter is required to be bounded. This is significant
for converging stably in registration. Otherwise, points of a set
converge to a small subset of the other.

5. It is a general framework for registration of m dimensions, and
it can be easily used in conjunction with other algorithms as the
ICP algorithm, for it is independent of shape representation and
feature extraction.



Fig. 9. Registration result of SICP on the Stanford Happy Buddha when T = diag(0.5,0.5,0.5). (a) Original range data with view point (0,90). (b) Original range data with view
point (�37.5,30). (c) Registration result of SICP with view point (0,90). (d) Registration result of SICP with view point (�37.5,30).
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Though progress has been made in the work described hereto-
fore, there is plenty of room for further numerous research issues.
Our future work will introduce weights to improve the precision of
registration between two partially overlapping point sets. Further-
more, actual testing of our algorithm also needs to be done for reg-
istration in practical use, such as 3D reconstruction of large ancient
building and the like.
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