

# Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

## **Basilisk Technical Memorandum**

Document ID: Basilisk-attTrackingError

### ATTITUDE TRACKING ERROR

| Prepared by | H. Schaub |
|-------------|-----------|
|-------------|-----------|

**Status:** Reviewed

#### Scope/Contents

This module is intended to be the last module in the guidance module chain. It's input is the reference motion message generated by a prior module. It's output is at the guidance attitude tracking errors relative to a moving reference frame. This module applies the body to corrected body attitude correction.

| Rev | Change Description       | Ву        | Date       |
|-----|--------------------------|-----------|------------|
| 1.0 | First Verision           | H. Schaub | 2016-01-15 |
| 1.1 | Revision and reformating | T. Teil   | 2019-02-20 |

### **Contents**

| 1 | Model Description                               | 1 |
|---|-------------------------------------------------|---|
|   | 1.1 Introduction                                | 1 |
|   | 1.2 Reference Frame Definitions                 |   |
|   | 1.3 Reference Frame Angular Velocity Vector     | 2 |
|   | 1.4 Reference Frame Angular Acceleration Vector |   |
|   | 1.5 Angular Velocity Tracking Error             | 3 |
| 2 | Module Functions                                | 3 |
| 3 | Module Assumptions and Limitations              | 3 |
| 4 | Test Description and Success Criteria           | 3 |
| 5 | Test Parameters                                 | 3 |
| 6 | Test Results                                    | 4 |
| 7 | User Guide                                      | 4 |
|   |                                                 |   |

### 1 Model Description

#### 1.1 Introduction

This technical note outlines how the attitude tracking errors are evaluated relative to a given reference frame. The reference frame from the chain of guidance modules is called  $\mathcal{R}_0$ , while the body corrected reference frame orientation is  $\mathcal{R}$ .

#### 1.2 Reference Frame Definitions

Let the primary body-fixed coordinate frame be  $\mathcal{B}: \{\hat{\pmb{b}}_1, \hat{\pmb{b}}_2, \hat{\pmb{b}}_3\}$ . However, instead of aligning this frame with a reference, a corrected body frame  $\mathcal{B}_c$  is to be aligned with a reference frame. Let the uncorrected reference orientation be given by  $\mathcal{R}_0$ . Thus, the guidance goal is to drive  $\mathcal{B}_c \to \mathcal{R}_0$ , which yields

$$[R_0N] = [B_cB][BN] \tag{1}$$

where  $\mathcal{N}$  is an inertial reference frame. Rearranging this relationship, with perfect attitude tracking the inertial body frame orientation should be

$$[BN] = [B_c B]^T [R_0 N] = [RN]$$
 (2)

where  $\mathcal{R}$  is a corrected reference frame. Note that  $[B_cB]=[R_0R]$ . Thus, the corrected reference orientation is computed using

$$[RN] = [R_0 R]^T [R_0 N]$$
(3)

where the body-frame correction is subtracted from the original reference orientation.

The benefit of driving  $\mathcal{B} \to \mathcal{R}$  instead of  $\mathcal{B}_c \to \mathcal{R}_0$  is that the body frame, along with the many device position and orientation vectors expressed in body-frame components, don't have to be rotated for each control evaluation. In simple terms, if the corrected body frame is a 60° rotation from the body

frame, then the  $60^{\circ}$  is subtracted from the original reference orientation. This allows all body inertia tensor and reaction wheel heading vector descriptions to remain in the primary body frame  $\mathcal{B}$ .

Assume the initial uncorrected reference frame  $\mathcal{R}_0$  is given through the MRP set  $\sigma_{R_0/N}$ 

$$[R_0 N(\boldsymbol{\sigma}_{R_0/N})] \tag{4}$$

The relative orientation of the corrected body frame relative to the primary body frame is a constant MRP set

$$[B_c B(\boldsymbol{\sigma}_{B_c/B})] = [R_0 R(\boldsymbol{\sigma}_{R_0/R})] \tag{5}$$

To apply this correction to the original reference frame, using the Direction Cosine Matrix (DCM) description, this is determined through

$$[RN(\boldsymbol{\sigma}_{R/N})] = [R_0 R(\boldsymbol{\sigma}_{R_0/R})]^T [R_0 N(\boldsymbol{\sigma}_{R_0/N})] = [R_0 R(-\boldsymbol{\sigma}_{R_0/R})] [R_0 N(\boldsymbol{\sigma}_{R_0/N})]$$
(6)

where the convenient MRP identity

$$[R_0 R(\boldsymbol{\sigma}_{R_0/R})]^T = [R_0 R(-\boldsymbol{\sigma}_{R_0/R})]$$
(7)

Note the following MRP addition property developed in Reference ?. If

$$[BN(\boldsymbol{\sigma})] = [FB(\boldsymbol{\sigma}'')][BN(\boldsymbol{\sigma}')] \tag{8}$$

then

$$\boldsymbol{\sigma} = \frac{(1 - |\boldsymbol{\sigma}'|^2)\boldsymbol{\sigma}'' + (1 - |\boldsymbol{\sigma}''|^2)\boldsymbol{\sigma}' - 2\boldsymbol{\sigma}'' \times \boldsymbol{\sigma}'}{1 + |\boldsymbol{\sigma}'|^2|\boldsymbol{\sigma}''|^2 - 2\boldsymbol{\sigma}' \cdot \boldsymbol{\sigma}''}$$
(9)

In the RigidBodyKinematics software library of Reference ?, this MRP evaluation is achieved with

$$oldsymbol{\sigma} = \mathtt{addMRP}(oldsymbol{\sigma}', oldsymbol{\sigma}'')$$

Thus, to properly apply the body frame orientation correction to the original reference frame, this function should be used with

$$\sigma_{R/N} = \mathtt{addMRP}(\sigma_{R_0/N}, -\sigma_{R_0/R})$$

The attitude tracking error of  $\mathcal{B}$  relative to  $\mathcal{R}$  is

$$oldsymbol{\sigma}_{B/R} = \mathtt{subMRP}(oldsymbol{\sigma}_{B/N}, -oldsymbol{\sigma}_{R/N})$$

#### 1.3 Reference Frame Angular Velocity Vector

The angular velocity of the original reference frame  $\mathcal{R}_0$  is

$$\omega_{R_0/N}$$
 (10)

The angular velocity tracking error is defined as

$$\delta \omega = \omega_{R/N} - \omega_{R/N} \tag{11}$$

The correct reference frame angular velocity is

$$\omega_{R/N} = \omega_{R/R_0} + \omega_{R_0/N} = \omega_{R_0/N} \tag{12}$$

because the body frame correction  $[B_cB] = [R_0R]$  is a constant angular offset.

The required inertial reference frame rate vector, in body frame components, is then given by

$${}^{\mathcal{B}}\boldsymbol{\omega}_{R/N} = [BN]^{\mathcal{N}}\boldsymbol{\omega}_{R/N} \tag{13}$$

#### 1.4 Reference Frame Angular Acceleration Vector

With  $\dot{\omega}_{R/N}$  given in the inertial frame, in the body frame this vector is expressed as

$${}^{\mathcal{B}}\dot{\boldsymbol{\omega}}_{R/N} = [BN]^{\mathcal{N}}\dot{\boldsymbol{\omega}}_{R/N} \tag{14}$$

#### 1.5 Angular Velocity Tracking Error

Finally, the angular velocity tracking error is expressed in body frame components as

$${}^{\mathcal{B}}\!\delta\omega = {}^{\mathcal{B}}\!\omega_{B/R} = {}^{\mathcal{B}}\!\omega_{B/N} - {}^{\mathcal{B}}\!\omega_{R/N} \tag{15}$$

#### 2 Module Functions

The only specific function to this module is the error computation function. It's only goal is to remove the computation from the update function itself.

• **computeAttitudeError**: This function calculates computes the attitude error between the reference and the spacecraft attitude.

### 3 Module Assumptions and Limitations

No assumptions or limitations are made specifically in this module. It simply uses the input messages to output an error between two different attitudes and rates.

### 4 Test Description and Success Criteria

The unit test instantiates the module and writes out a reference attitude message as well as a spacecraft navigation message. It then compares the module outputs to expected results.

#### 5 Test Parameters

In order to test the proper implementation of this module, the unit test verify that the module output guidance message vectors match expected values.

Table 2: Error tolerance for each test.

| Output Value Tested                    | Tolerated Error |
|----------------------------------------|-----------------|
| $\sigma_{BR}$                          | $10^{-12}$      |
| $^{\mathcal{B}}\!\omega_{BR}$          | $10^{-12}$      |
| $\mathcal{B}_{\omega_{RN}}$            | $10^{-12}$      |
| $_{}^{\mathcal{B}}\!\delta\omega_{RN}$ | $10^{-12}$      |

The error tolerances are given in Table 2, while initial conditions used in this test are as follows:

Table 3: Initial conditions

| Navigation Information            | Value                                                    |
|-----------------------------------|----------------------------------------------------------|
| $\sigma_{BN}$                     | $\begin{bmatrix} 0.25 & -0.45 & 0.75 \end{bmatrix}^T$    |
| $\mathcal{B}_{\omega_{BN}}$       | $\begin{bmatrix} 0.25 & -0.45 & 0.75 \end{bmatrix}^T$    |
| Reference Information             | Value                                                    |
| $\sigma_{RN}$                     | $\begin{bmatrix} 0.35 & -0.25 & 0.15 \end{bmatrix}^T$    |
| $\mathcal{N}_{\omega_{RN}}$       | $\begin{bmatrix} 0.018 & -0.032 & 0.015 \end{bmatrix}^T$ |
| $\delta^{\mathcal{N}}\omega_{RN}$ | $\begin{bmatrix} 0.048 & -0.022 & 0.025 \end{bmatrix}^T$ |

Finally the precomputed expected values for the test are give in the following table:

Table 4: Precomputed Expected values

| Output Value Tested                    | Tolerated Error                                                                                        |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|
| $\sigma_{BR}$                          | $\begin{bmatrix} 0.1836841481753408 & -0.0974447769418166 & -0.09896069560518146 \end{bmatrix}^T$      |
| $^{\mathcal{B}}\!\omega_{BR}$          | $\begin{bmatrix} -0.01181207648013235 & -0.008916032420030655 & -0.0344122606253076 \end{bmatrix}^T$   |
| $oldsymbol{\mathcal{B}}_{\omega_{RN}}$ | $\begin{bmatrix} -0.003187923519867655 & -0.003083967579969345 & 0.0394122606253076 \end{bmatrix}^{T}$ |
| $^{\mathcal{B}}\!\delta\omega_{RN}$    | $\begin{bmatrix} -0.02388623421245188 & -0.02835600277714878 & 0.04514847640452802 \end{bmatrix}^T$    |

### 6 Test Results

All of the tests passed:

Table 5: Test results

| Check | Pass/Fail |
|-------|-----------|
| 1     | PASSED    |
| 2     | PASSED    |
| 3     | PASSED    |
| 4     | PASSED    |

### 7 User Guide

The user only needs to setup the module and link the proper message names:

- Build the C-struct:
   module = attTrackingError.attTrackingError()
- Add the module to the task: unitTestSim.AddModelToTask(unitTaskName, module)
- Set the ROR vector: module.sigma\_ROR = [0.01, 0.05, -0.55]

### **REFERENCES**