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Scope/Contents
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1 Model Description

1.1 Module Goal

This module computes a reference whose aim is to track the center of a primary target, e.g. pointing
the communication antenna at the Earth, at the same time of trying to meet a secondary constraint as
best as possible, e.g. a solar panel normal axis pointing the closest in the direction of the Sun. It is
important to note that two pointing conditions in a three-dimensional space compose an overdetermined
problem. Thus, the main constraint is always priorized over the secondary one so the former can always
be met.
Figure 1 shows the case where Mars is the primary celestial body and the Sun is the secondary one.
Note that the origin of the desired reference frame R is the position of the spacecraft.

Assuming knowledge of the position of the spacecraft rB{N and the involved celestial bodies, RP1

and RP2 (all of them relative to the inertial frame N and expressed in inertial frame components), the
relative position of the celestial bodies with respect to the spacecraft is obtained by simple subtraction:

RP1 “ RP ´ rB{N (1a)

RP2 “ RS ´ rB{N (1b)
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Fig. 1: Illustration of the restricted two-body pointing reference frame R : tr̂1, r̂1, r̂2u and the inertial frame
N : tn̂1, n̂1, n̂2u.

In analogy, the inertial derivatives of these position vectors are obtained:

vP1 “ vP ´ vB{N (2a)

vP2 “ vS ´ vB{N (2b)

aP1 “ aP ´ aB{N (2c)

aP2 “ aS ´ aB{N (2d)

The normal vector Rn of the plane defined by RP1 and RP2 is computed through:

Rn “ RP1 ˆRP2 (3)

The inertial time derivative of Rn is found using the chain differentiation rule:

vn “ vP1 ˆRP2 `RP1 ˆ vP2 (4)

And the second time derivative:

an “ aP1 ˆRP2 `RP1 ˆ aP2 ` 2vP1 ˆ vP2 (5)

1.2 Special Case: No Secondary Constraint Applicable

If there is no incoming message with a secondary celestial body pointing condition or if the constrain is
not valid, an artificial three-dimensional frame is defined instead. Note that a single condition pointing
leaves one degree of freedom, hence standing for an underdetermined attitude problem. A secondary
constrain is considered to be invalid if the angle between RP1 and RP2 is, in absolute value, minor than
a set threshold. This could be the case where the primary and secondary celestial bodies are aligned
as seen by the spacecraft. In such situation, the primary pointing axis would already satisfy both the
primary and the secondary constraints.

Since the main algorithm of this module, which is developed in the following sections, assumes two
conditions, the second one is arbitrarily set as following:

RP2 “ RP1 ˆ vP1 ” hP1 (6)
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By setting the secondary constrain to have the direction of the angular momentum vector hP1, it is
assured that it will always be valid (RP1 and RP2 are now perpendicular). The first and second time
derivatives are steadily computed:

vP2 “ RP1 ˆ aP1 (7)

aP2 “ vP1 ˆ aP1 (8)

1.3 Reference Frame Definition

As illustrated in Figure 1, the base vectors of the desired reference frame R are defined as following:

r̂1 “
RP1

|RP1|
(9a)

r̂3 “
Rn

|Rn|
(9b)

r̂2 “ r̂3 ˆ r̂1 (9c)

Since the position vectors are given in terms of inertial N -frame components, the DCM from the inertial
frame N to the desired reference frame R is:

rRN s “

»

—

–

N
r̂T1

N
r̂T2

N
r̂T3

fi

ffi

fl

(10)

1.4 Base Vectors Time Derivatives

The first and second time derivatives of the base vectors that compound the reference frame R are
needed in the following sections to compute the reference angular velocity and acceleration. Several
lines of algebra lead to the following sets:

9̂r1 “ prI3ˆ3s ´ r̂1r̂
T
1 q
RP1

|RP1|
(11a)

9̂r3 “ prI3ˆ3s ´ r̂3r̂
T
3 q
Rn

|Rn|
(11b)

9̂r2 “ 9̂r3 ˆ r1 ` rn ˆ 9̂r3 (11c)

Steps of the derivation for the first term are given here:

9̂r1 “ RP1 pRP1 ¨RP1q
´ 1

2 (12a)

“
9RP1

|RP1|
´

1

2
RP1RP1 ¨ 9RP1 pRP1 ¨RP1q

´ 3
2 (12b)

“
9RP1

|RP1|
´ r̂1r̂

T
1

9RP1

|RP1|
(12c)

“ prI3ˆ3s ´ r̂1r̂
T
1 q
RP1

|RP1|
(12d)
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The second equation follows an equivalent definition, while the third one completes the frame. The
accelerations are given in the following equations:

:̂r1 “
1

|RP1|

´

prI3ˆ3s ´ r̂1r̂
T
1 qaP1 ´

´

2 9̂r1r̂
T
1 ´ r̂1

9̂rT1

¯

vP1

¯

(13a)

:̂r3 “
1

|Rn|

´

prI3ˆ3s ´ r̂3r̂
T
3 qan ´

´

2 9̂r3r̂
T
3 ´ r̂3

9̂rT3

¯

vn

¯

(13b)

:̂r2 “ :̂r3 ˆ r1 ` r1 ˆ :̂r3 ` 2 9̂r3 ¨ 9̂r1 (13c)

Elements of the derivation for the first term follow:

:̂r1 “ prI3ˆ3s ´ r̂1r̂
T
1 q

˜

:RP1

|RP1|
´

9RP1

|RP1|

9RP1

|RP1|

T

r̂1

¸

´

´

9̂r1r̂
T
1 ` r̂1

9̂rT1

¯ 9RP1

|RP1|
(14a)

“ prI3ˆ3s ´ r̂1r̂
T
1 q

:RP1

|RP1|
´

˜

prI3ˆ3s ´ r̂1r̂
T
1 q

9RP1

|RP1|

¸

9RP1

|RP1|

T

r̂1 ´
´

9̂r1r̂
T
1 ` r̂1

9̂rT1

¯ 9RP1

|RP1|
(14b)

“ prI3ˆ3s ´ r̂1r̂
T
1 q

aP1

|RP1|
´ 9̂r1

vP1

|RP1|

T
r̂1 ´

´

9̂r1r̂
T
1 ` r̂1

9̂rT1

¯ vP1

|RP1|
(14c)

“
1

|RP1|
pprI3ˆ3s ´ r̂1r̂

T
1 qaP1 ´ 2 9̂r1pr̂1 ¨ vP1q ´ r̂1p 9̂r1 ¨ vP1qq (14d)

“
1

|RP1|

´

prI3ˆ3s ´ r̂1r̂
T
1 qaP1 ´

´

2 9̂r1r̂
T
1 ´ r̂1

9̂rT1

¯

vP1

¯

(14e)

1.5 Angular Velocity and Acceleration Descriptions

Developing some more mathematics, the following elegant expressions of ωR{N and 9ωR{N are found:

ωR{N ¨ r̂1 “ r̂3 ¨ 9̂r2 (15a)

ωR{N ¨ r̂2 “ r̂1 ¨ 9̂r3 (15b)

ωR{N ¨ r̂3 “ r̂2 ¨ 9̂r1 (15c)

9ωR{N ¨ r̂1 “ 9̂r3 ¨ 9̂r2 ` r̂3 ¨ :̂r2 ´ ωR{N ¨
9̂r1 (16a)

9ωR{N ¨ r̂2 “ 9̂r1 ¨ 9̂r3 ` r̂1 ¨ :̂r3 ´ ωR{N ¨
9̂r2 (16b)

9ωR{N ¨ r̂3 “ 9̂r2 ¨ 9̂r1 ` r̂2 ¨ :̂r1 ´ ωR{N ¨
9̂r3 (16c)

Note that ωR{N ¨ r̂1 is the first component of the angular velocity of the reference with respect to the
inertial expressed in reference frame components. Hence,

ωR{N “

R»

–

ωR{N ¨ r̂1
ωR{N ¨ r̂2
ωR{N ¨ r̂3

fi

fl (17)

Similarly for the angular acceleration:

9ωR{N “

R»

–

9ωR{N ¨ r̂1
9ωR{N ¨ r̂2
9ωR{N ¨ r̂3

fi

fl (18)
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Eventually, in inertial frame components:

NωR{N “ rRN s RωR{N (19a)
N 9ωR{N “ rRN s R 9ωR{N (19b)

2 Module Functions
• parseInputMessages: This method takes the navigation translational info as well as the spice

data of the primary celestial body and, if applicable, the second one, and computes the relative
state vectors necessary to create the restricted 2-body pointing reference frame.

• computeCelestialTwoBodyPoint: This method takes the spacecraft and points a specified axis
at a named celestial body specified in the configuration data. It generates the commanded attitude
and assumes that the control errors are computed downstream.

3 Module Assumptions and Limitations
The module assumes for now that the planetary acceleration vectors are zero. Furthermore, if the
spacecraft trying to navigate with this algorithm is an a rectilinear (impact) trajectory towards one of
the planets used for pointing, the frames will not be defined. This module therefore assumes that the
orbits are conics.

4 Test Description and Success Criteria
The mathematics in this module are straight forward and can be tested in a series of input and output
evaluation tests.

4.1 Test 1

The first test does a single-body celestial point. It places a spacecraft around Earth on an orbit with
parameters given in 2. The earth position and velocity vectors are both set to the zero vectors.

Table 2: Spacecraft Orbital Paramters

Orbital Parameter Value
a 2.8Rearth
e 0
i 0˝

Ω 0˝

ω 0˝

f 60˝

4.2 Test 2

The second test does the 2-body celestial point. It uses the same parameters at above and sets a second
planet with zero velocity and position vector:

Nr2 “
“

500 500 500
‰T
pkmq (20)

5 Test Parameters
For each of these two tests, the tested parameters are listed Table 3.
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Table 3: Error tolerance for each test.

Output Value Tested Tolerated Error
σR{N 1e-12

NωR{N 1e-12
N

9ωR{N 1e-12

6 Test Results
All of the tests passed:

Table 4: Test results

Check Pass/Fail
1.1 PASSED
1.2 PASSED
1.3 PASSED
2.1 PASSED
2.2 PASSED
2.3 PASSED

7 User Guide

7.1 Input/Output Messages

The module has 2 required input messages, 1 optional input message and 1 output message:

• inputNavDataName – This input message, of type NavTransIntMsg, provide the translational-
navigation states for the spacecraft.

• inputCelMessName – This input message, of type EphemerisIntMsg, receives the first planet
states for pointing

• inputSecMessName – (Optional) This input message, of type EphemerisIntMsg, receives the
second planet states for pointing

• outputDataName – This output message, of type AttRefFswMsg, writes out the attitude, rate,
and inertial derivative of the rate in order to perform control.

7.2 Module Parameters and States

Outside of the message names, this module only has one other parameter:

• singularityThresh - This parameter determines the threshold after which two vectors are con-
sidered collinear.


	Model Description
	Module Goal
	 Special Case: No Secondary Constraint Applicable
	Reference Frame Definition
	Base Vectors Time Derivatives
	Angular Velocity and Acceleration Descriptions

	Module Functions
	Module Assumptions and Limitations
	Test Description and Success Criteria
	Test 1
	Test 2

	Test Parameters
	Test Results
	User Guide
	Input/Output Messages
	Module Parameters and States


